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ABSTRACT  
  
Slum identification in urban settlements is a crucial step in the process of formulation of pro-
poor policies. However, the use of conventional methods for slums detection such as field 
surveys may result time consuming and costly. This paper explores the possibility of 
implementing a low-cost standardized method for slum detection. We use spectral, texture and 
structural features extracted from very high spatial resolution imagery as input data and 
evaluate the capability of three machine learning algorithms (Logistic Regression, Support 
Vector Machine and Random Forest) to classify urban areas as slum or no-slum. Using data 
from Buenos Aires (Argentina), Medellin (Colombia), and Recife (Brazil), we found that Support 
Vector Machine with radial basis kernel deliver the best performance (over 0.81). We also found 
that singularities within cities preclude the use of a unified classification model. 
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RESUMEN  
 

La identificación de los asentamientos urbanos informales es un paso crucial en el proceso de 
formulación de políticas dirigidas a mitigar la pobreza. Sin embargo, el uso de métodos 
convencionales para la detección de asentamientos informales, como las encuestas de campo, 
puede resultar lento y costoso. Este artículo explora la posibilidad de implementar un método 
estandarizado, de bajo costo, para la detección de asentamientos urbanos informales. 
Utilizamos como datos de entrada variables espectrales, estructurales y de textura extraídas de 
imágenes satelitales de alta resolución, y evaluamos la capacidad de tres algoritmos de 
aprendizaje automático (Regresión Logística, Máquinas de Vectores de Soporte y Bosque 
Aleatorio) para clasificar las áreas urbanas entre asentamientos formales o informales. Usando 
los datos de Buenos Aires (Argentina), Medellín (Colombia) y Recife (Brasil), encontramos que 
la Máquinas de vectores de soporte, con kernel radial, proporcionan el mejor desempeño (más 
de 0,81). También encontramos que las singularidades dentro de las ciudades impiden el uso 
de un modelo de clasificación unificado. 
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Exploring the potential of machine learning for automatic
slum identification from VHR imagery

Abstract

Slum identification in urban settlements is a crucial step in the process of formulation of pro-poor
policies. However, the use of conventional methods for slums detection such as field surveys may
result time consuming and costly. This paper explores the possibility of implementing a low-cost
standardized method for slum detection. We use spectral, texture and structural features extracted
from very high spatial resolution imagery as input data and evaluate the capability of three machine
learning algorithms (Logistic Regression, Support Vector Machine and Random Forest) to classify
urban areas as slum or no-slum. Using data from Buenos Aires (Argentina), Medellin (Colombia),
and Recife (Brazil), we found that Support Vector Machine with radial basis kernel deliver the best
performance (over 0.81). We also found that singularities within cities preclude the use of a unified
classification model.
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1 Introduction

According to UN-Habitat (2015) slums are the most deprived and excluded form of informal set-
tlements characterized by poverty and agglomerations of inadequate housing often located in haz-
ardous urban land. About one in eight people live in slums by 2016 and even though the recent
progress in improving slums and preventing their formation, the absolute number of urban popu-
lation living in slums continue to grow and it is a critical factor for the persistence of poverty in
the world (UN-Habitat, 2016).

There is a recent boom in the number of studies regarding the usefulness of remote sensing im-
agery to measure socioeconomic variables (Duque et al., 2015; Engstrom et al., 2015; Sandborn and
Engstrom, 2016). This trend is in part the result of the increasing availability of satellite platforms
and the decreasing costs of these imagery (Patino and Duque, 2013; Kuffer et al., 2016a). Remote
sensing imagery may become an alternative source of information in urban settings where survey
data is scarce, or to complement socioeconomic data for different dates than those of socioeconomic
surveys (Duque et al., 2015). The use of remote sensing data to estimate socioeconomic variables
is based in the premise that the physical appearance of a human settlement is a reflection of the
society that created it and on the assumption that people living in urban areas with similar physi-
cal housing conditions have similar social and demographic characteristics (Jain, 2008; Taubenböck
et al., 2009).

Slum detection or slum mapping is one of the most recurrent applications in this field, with at
least 87 published papers in scientific journals in the last 15 years (Kuffer et al., 2016a). These
works have demonstrated that the physical characteristics of slums are distinguishable from those
of formal settlements using remote sensing data (Kuffer and Barros, 2011; Kuffer et al., 2016b;
Taubenböck and Kraff, 2014). This is an important area of study because many local governments
do not fully acknowledge the existence of slums or informal settlements (UN-Habitat, 2015); which
is a drawback for the formulation of pro-poor policies in cities (Kuffer et al., 2016a).

The methods for the identification of slum areas from remote sensing imagery are diverse. Object
based image analysis (OBIA) is the most used method until now, followed by visual interpretation,
texture/morphology analysis and machine learning, which shows higher accuracies and it is often
combined with OBIA (Kuffer et al., 2016a). Machine learning (ML) approaches usually combine
textural, spectral and structural features (Kuffer et al., 2016b). The Random Forest Classifier
(RFC) is one of the most popular ML methods for slum extraction from very high spatial resolution
(VHR) imagery (Kuffer et al., 2016b). Support Vector Machine (SVM) and Neural Networks (NN)
are also used (Kuffer et al., 2016a). However most of these ML algorithms are implemented at pixel
level, which have limitations when working with VHR imagery as opposed to OBIA (Kohli et al.,
2016); and the selection of the ML methods to be used is often done following the intuition of the
researcher.

According to Kuffer et al. (2016a), most of the published works in slum mapping from remote
sensing used expensive commercial imagery with near-infrared (NIR) information (Owen and Wong,
2013) or three dimensional data such as LIDAR (Taubenböck and Kraff, 2014). Many small cities
in developing countries do not have available budget to purchase full satellite imagery, and restrict
themselves to use RGB data for data extraction via interpretation (Kohli et al., 2016). Google Earth
(GE) imagery may be the only available source of aerial imagery for small local governments, and
GE images are free to the public (Yang et al., 2012; Hu et al., 2013). Also, Google Earth provides
historical VHR imagery for many places, which could be useful for spatio-temporal urban analysis.

The purpose of this paper is threefold: First, we explore the possibility of detecting slums
within cities using solely very high spatial resolution (VHR) RGB GE imagery without ancillary
data. Second, we compare the performance of different ML algorithms for slum identification,
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given the same inputs, to determine which performs better. Third, we seek to implement a low-
cost standardized method to perform slum detection, which must be flexible and easy to automate,
and which could be useful in other urban settings with scarce data. We use data for three Latin
American cities with different physical and climate conditions as well as different urban layout
characteristics: Buenos Aires (Argentina), Medellin (Colombia), and Recife (Brazil).

The structure of this chapter is as follows: section 2 describes the implemented methodology
including a description of the data, the three classification models utilized in this paper. Section
3 shows the results and discussion of the implemented approach. Section 4 presents the main
conclusions, suggestions for future research and policy making implications of this line of research
for local governments and authorities.

2 Methods

Our goal is to design an algorithmic structure to automatically identify the parts of the city with
the urban characteristics of a Slum. This problem can be defined as a binary classification problem
on which the inputs are features extracted from the GE images and the output a binary variable
taking the value of 1 if a particular part of the city is slum and 0 otherwise. Figure 1 summarizes
the proposed approach for slum detection. The process starts with the collection of the input data
that consists of the administrative boundaries, obtained from Open Street Maps (OSM), and the
GE images for two different time instances (upper part of the figure). The second stage of the
process (middle part of the figure) consist of calculating spectral, textural and structural variables
(i.e., the image feature extraction) from the GE images. For this, the images are discretized by
overlapping a regular grid whose outer border is defined by the OSM boundary. This procedure
generates the Spatial Datasets (one per year and city) composed by regular polygons with their
corresponding spectral, textural and structural variables. Finally, the third stage (lower part of the
figure) consists of the classification analysis on which the data of the most recent year is used to
train the classification models and identify the best-performing model for slum identification. The
best model is then applied on the images from previous years to identify urban changes in the most
critical areas of the city.

2.1 The Data

We selected three different Latin American cities to test the transferability of this approach: Buenos
Aires, Argentina; Medellin, Colombia; and Recife, Brazil (figure 2). These cities represent differ-
ent climate and environmental conditions, different cultures and different availability of building
materials. Buenos Aires is located at 34◦ 35′ 59′′ S 58◦ 22′ 55′′ W at sea level bordering La Plata
river outlet to the ocean over plain lands and has a dry climate with marked seasons. Medellin is
located at 6◦ 14′ 41′′ N 75◦ 34′ 29′′ W in an intramountain valley at 1,460 meters above mean sea
level and has a tropical wet climate. Recife is located at 8◦ 03′ 14′′ S 34◦ 52′ 51′′ W at sea level in
a hilly terrain and also has tropical wet climate. Slum areas in the three cities share some common
characteristics: crowdness, small dwelling sizes, very narrow roads, and few vegetated areas. Table
1 shows general descriptors of these cities.
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Figure 1. Flow diagram of the proposed approach for slum detection and change analysis.

Variable Buenos Aires Medellin Recife

Population estimates for 2010 [people] 2,890,151 2,309,446 1,537,794
Area [Km2] 200 105 218
Density [people/Km2] 14,451 21,995 7,040
Elevation [masl] 0 1,480 0
Mean annual temperature [C] 18 24 25
Average relative humidity [%] 72.0 68.3 79.8

Table 1. Descriptives per city. Data sources: www.buenosaires.gob.ar/laciudad/ciudad, www.medellin.gov.co, and
cidades.ibge.gov.br

We downloaded the most updated (up to March 2016) GE images for each city with enough
zoom level to be similar to VHR imagery with sub-meter pixel size. Google Earth imagery with
very high spatial resolution are available for almost all urban areas worldwide. Those VHR images
come from a number of providers or satellite platforms; e.g., Digital Globe, Geo Eye, and CNES /
Astrium, among others. The images are captured by different sensors and on different dates and
with different spatial resolution, but almost all have submeter pixel size and they are served as
natural-colored images with three bands: red, green and blue (RGB). Due to the differences in
platforms and dates of adquisition, images of a same place from different dates can show differences
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Figure 2. Cities included in the study.

in illumination conditions and color intensity between them. The GE images were georreferenced
and rescaled between 0 and 255. We kept the preprocessing of the images to a minimum to gain
speed in the workflow and to mantain the ease of automation of the whole approach.

Previous research has stated that block-level spatial units of analysis are most useful for ur-
ban planing purposes (Taubenböck and Kraff, 2014; Cabrera-Barona et al., 2016). OpenStreetMap
(OSM) data layers of streets and roads are useful to delineate urban blocks. However, in many cities
of developing countries the available street network is incomplete due to the high density and com-
plexity of slum areas (Taubenböck and Kraff, 2014), or because the areas that have been occupied
recently have not been registered at all in the OSM datasets, as is the case in the northeastern part
of Medellin city. In those instances the delineation of urban blocks would add considerable process-
ing time to the approach as it would require the visual interpretation and manual digitalization of
roads and pedestrian paths to delineate the blocks.

An alternative that is easy to automate is the use of a regular grid to perform slum detection
from remote sensing imagery. Previous works have used regular grids to extract, aggregate and
classify image data (Kuffer et al., 2016a; Schöpfer et al., 2007; Tapiador et al., 2011). A regular grid
in vector format, or fishnet, can be drawn in any GIS software and the required input is solely the
boundary of the study area, thus adding speed to this approach. We tested the use of two fishnets
with different polygon size: a fishnet of square cells of 100 meters each side and another fishnet
of square cells of 50 meters each side for image feature extraction and classification. The results
obtained with the 100 m grid outperformed those obtained by using the 50 m grid in regard to the
correct classification of slum-like areas. These 100 m square cells are similar in size to actual urban
bolcks, which have been recognized as a useful spatial unit of analysis to study intra-urban poverty
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and to ease urban planning and policy making (Cabrera-Barona et al., 2016). We downloaded the
administrative boundarys of each city from OSM usign QGIS (QGIS Development Team, 2015)
and then we created a regular grid of square cells of 100 meters each side over the urban areas of
each city to perform image feature extraction.

We also selected recognized slum areas for each city and then downloaded cloud-free GE images
for each sector from about a decade ago to test the approach for change analysis of slum areas.
We seeked to have images from the same city separated almost a decade to see if the proposed
approach could pick up the changes between dates. This time span is restricted by the availability
of VHR images in Google Earth for each city and by the quality of the available images, which
can be affected by the presence of clouds and shadows. The historical VHR imagery served in GE
is also restricted to the availability of commercial VHR data, which started to be released after
the launch of the Ikonos satellite in 1999. The most dated good quality VHR images available for
Buenos Aires, Medellin, and Recife are from 2006, 2008, and 2008 respectively. Even though there
are available images from previous dates for these cities in GE, those images come from medium
spatial resolution platforms and they are not a suitable source for the extraction of spatial pattern
descriptors at intra-urban scale.

The historical GE images were then resampled to the same pixel size than the 2016 images
of each city, and we performed radiometric normalization between the historical images and the
2016 image, taking the 2016 images as reference. Resampling and radiometric normalization were
performed to obtain historical images with the same pixel size and similar color intensity as the
2016 images (i.e., pixel values in each RGB band). This preprocessing of historical images is aimed
to ease the identification of actual changes instead of changes in intensity due to differences in
illumination and atmospheric conditions between the two images.

2.1.1 Feature Extraction

We used current GE images (March 2016) and the regular grid of each city to automatically
extract image information using FETEX 2.0. Figure 3 shows the outline of the urban areas of
each city and selected sectors of 500 by 500 meters to illustrate the regular grid over the 2016 GE
images. FETEX is an interactive computer package for image, object-oriented feature extraction
(Ruiz et al., 2011), and it is available at the Geo-Environmental Cartography and Remote Sensing
Research Group website: http://cgat.webs.upv.es. We calculated three sets of variables: a set of
spectral features, a set of texture features and a set of structural features. The different image
features are extracted from the image by processing the pixels that are located within the same
polygon, without changing the image resolution or pixel values. Spectral features inform about
color, while texture and structure features inform about the spatial arrangement of the elements
in within the image. The urban layout in slum-like neighborhoods often displays a more organic,
crowded and cluttered pattern than that in more formal and wealthy neighborhoods, and texture
and structure features are useful to differentiate between slum and no-slum areas (Duque et al.,
2015; Kuffer et al., 2015, 2016b). Table 2 shows the complete list of remote sensing variables used
in this analysis.

Spectral features: The spectral features are the summary statistics of pixel values inside
each polygon. These features inform about the spectral response of objects, which depends on
land coverage types, state of vegetation, soil composition, building materials, etc. (Ruiz et al.,
2011). We selected the mean and standard deviation in each RGB band, as well as the majority
statistic, to be extracted within this group. These features are easy to understand and could inform
better about the spectral differences across the cities than the other summary statistics (minimum,
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Figure 3. Urban areas and selected sectors showing the regular grid over the 2016 GE images of each city. From left
to right: Buenos Aires, Medellin, Recife.

maximum, range, and sum).

Texture features: Texture features characterize the spatial distribution of intensity values in
the image and provide information about contrast, uniformity, rugosity, etc. (Ruiz et al., 2011).
FETEX 2.0 performs texture feature extraction based on the Grey Level Co-occurrence Matrix
(GLCM) and the histogram of pixel values inside each polygon. The kurtosis and skewness features
are based on the histogram of the pixel values inside the polygon, while the GLCM describes the
co-occurrences of the pixel values that are separated at a distance of one pixel inside the polygon,
and it is calculated considering the average value of four principal orientations, 0◦, 45◦, 90◦ and
135◦, to avoid the influence of the orientation of the elements inside the polygon (Ruiz et al., 2011).
The GLCM is employed in FETEX 2.0 to calculate a set of variables, proposed by Haralick et al.
(1973), that are widely used in image processing, including uniformity, entropy, contrast, inverse
difference moment (IDM), covariance, variance, and correlation. The edgeness factor is another
useful feature that represents the density of edges present in a neighborhood, and the mean and
standard deviation of the edgeness factor (MEAN EDG, STDEV EDG) are also computed within
this set of texture features in FETEX 2.0 (Ruiz et al., 2011).

Structural features: These features provide information of the spatial arrangement of ele-
ments inside the polygons in terms of randomness or regularity of the distribution of the elements
(Balaguer et al., 2010; Balaguer-Beser et al., 2013; Ruiz et al., 2011). Structure features are calcu-
lated in FETEX using the experimental semivariogram approach. According to Ruiz et al. (2011),
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the semivariogram quantifies the spatial associations of the values of a variable, measures the degree
of spatial correlation between different pixels in an image and is a suitable tool for the characteri-
zation of regular patterns. FETEX 2.0 obtains the experimental semivariogram of each polygon by
computing the mean of the semivariogram calculated in six different directions, from 0◦ to 150◦,
with step increments of 30◦. Then, each semivariogram curve is smoothed using a Gaussian filter to
reduce experimental fluctuations (Ruiz et al., 2011). Structural features extracted from the semi-
variogram are based on the zonal analysis defined by a set of singular points on the semivariogram,
such as the first maximum, the first minimum, and the second maximum (Ruiz et al., 2011).1

Group Variable name Description

Spectral features

MEAN1 Mean of pixel values in band 1
DEVST1 Standard deviation of pixel values in band 1
MAJORITY1 Majority of pixel values in band 1
MEAN2 Mean of pixel values in band 2
DEVST2 Standard deviation of pixel values in band 2
MAJORITY2 Majority of pixel values in band 2
MEAN3 Mean of pixel values in band 3
DEVST3 Standard deviation of pixel values in band 3
MAJORITY3 Majority of pixel values in band 3

Texture features

MEAN EDG Mean of the edgeness factor
DEVST EDG Standard deviation of the edgeness factor
UNIFOR GLCM uniformity
ENTROP GLCM entropy
CONTRAS GLCM contrast
IDM GLCM inverse difference moment
COVAR GLCM covariance
VARIAN GLCM variance
CORRELAC GLCM correlation
SKEWNESS Skewness value of the histogram
KURTOSIS Kurtosis value of the histogram

Structure features

RVF Ratio variance at first lag
RSF Ratio between semivariance values at second and first lag
FDO First derivative near the origin
SDT Second derivative at third lag
MFM Mean of the semivariogram values up to the first maxi-

mum
VFM Variance of the semivariogram values up to the first max-

imum
DMF Difference between the mean of the semivariogram values

up to the first maximum and the semivariance at first lag
RMM Ratio between the semivariance at first local maximum

and the mean semivariogram values up to this maximum
SDF Second order difference between first lag and first maxi-

mum
AFM Area between the semivariogram value in the firs lag and

the semivariogram function until the first maximum

Table 2. Image-derived variables.

2.1.2 The Dataset

Once the image features are extracted, the next step is to create the dataset. This process consist
of selecting, for each city, a ground truth sample. Each polygon of the sample is manually labeled
in one of two categories: slum, no-slum. Ancillary information and previous studies where used as
reference to identify slum areas in each city for sampling. The location of slum areas in Buenos

1For a full description of these features, see Balaguer et al. (2010); Balaguer-Beser et al. (2013) and Ruiz et al.
(2011).
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Aires where identified from the web site “Caminos de la Villa” (www.caminosdelavilla.org) which
shows an interactive map of the city and the location of recognized “villas” (slums), and we used
the delineation of urban slums from Duque et al. (2013) and Duque et al. (2015) for Medellin;
and from Da Silva and Shaw (2011) for Recife. Sampling of no-slum areas in each city included
different formal urban layouts across each city, i.e., high and low rise residential areas, as well as
parks, urban forests and green spaces, and commercial and industrial areas like malls, transport
facilities and factories. When benchmark information of slum areas is not available to build the
ground truth sample, practicioners must seek reference information with local authorities or use an
experienced photo-interpreter who can visually pick up slum and no-slum areas to build it. Figure
4 shows the spatial distribution of the sample in each city.

The final step in this stage is to divide the dataset into two sets: the training set, 60% of the
sampled polygons for training and tuning the classification models, and the testing set, 40% of
the sampled polygons to evaluate the predictive capability of the classification models. Table 3
summarizes the composition of the datasets.

Figure 4. Sampling scheme of slum and no-slum areas in each city. From left to right: Buenos Aires, Medellin, Recife.

Table 3. Composition of the dataset

City Total Labeled No Labeled L. Slum L. No Slum Training Testing

Buenos Aires 21,516 6,558 14,958 369 6,189 3,934 2,624
Medellin 10,255 2,891 7,364 602 2,289 1,734 1,157
Recife 22,037 11,218 10,819 1,274 9,944 6,730 4,488

Once the ground truth sampling was complete, we used these data and the Kolmogorov-Smirnov
(KS) test (Marsaglia et al., 2003) implemented in the R package “kolmin” (Carvalho, 2015; R Core
Team, 2013) to better understand the discriminating power of the image-derived variables for the
differentiation of slum areas from no-slum areas within each city. The results of the Kolmogorov-
Smirnov test indicate that the distributions of all image-derived variables are statistically different
for the slum areas compared to the no-slum areas. Figure 5 shows the boxplots of the top 5 most
discriminant image-extracted variables for each city.2 It is very interesting that two of the top 5
most discriminating variables are present in all 3 cities (SDF and CONTRAS), and that the top 5
are the same for Buenos Aires and Medellin (SFD, CONTRAS, IDM, MEAN EDG and FDO).

These variables are from the texture and structure groups, with the exception of MEAN1,
wich belongs to the spectral group and informs about the mean of the intensity values in band

2The results for the other variables are available upon authors request.
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1, which corresponds to the red channel. SDF is a structure variable that informs homogeneity
at short distances (Balaguer et al., 2010; Balaguer-Beser et al., 2013) and slum areas show lower
homogeneity than no-slum areas because is often common the presence of different small dwelling
units with different roof colors in close proximity to each other (Duque et al., 2015). CONTRAS is
a texture variable that informs about the differences in color and intensity of the objects present
in the image (Haralick et al., 1973), and in these cities the slum areas show higher values than
no-slum areas. MEAN EDG is an aggregated measure of the density of edges present in the image
(Ruiz et al., 2011), and slum areas in these cities tend to show higher values than no-slum areas
because the smaller size of dwelling units, narrower roads, and the presence of shadows between
housing units and their surroundings. IDM is a texture measure that informs about the general
homogeneity (Haralick et al., 1973; Ruiz et al., 2011), and slum areas are characterized by lower
values of this feature than no-slum areas (Duque et al., 2015). FDO is a structure feature that
informs about the variability changes at short distances (Balaguer et al., 2010), and slum areas
show higher values than no-slum areas because pixel values can change abruptly at short distances.
AFM and DMF are structure features that are related also to the variability of the pixel values
in the image (Balaguer et al., 2010), and Recife slum areas tend to show higher values of both
features than no-slum areas, meaning that the slum areas often display more variability and less
homogeneity than no-slum areas.

2.2 Classification Model

Classification literature is broad and multiple methods and algorithms have been proposed in the
last decades (Hastie et al., 2009). In general, the main goal is to develop a quantitative classification
method capable of learning and generalize the relationship between a set of variables (X) and a
categorical variable (Y ). For our particular classification problem X is a matrix with the spectral,
texture, and structure values of each polygon in the grid, and Y a categorical variable defined as
1 or -1 if a polygon is a slum or no-slum respectively. The capability of the classification method
is ruled by two factors: i) The theoretical definition of the classification boundary of the classifier
(e.g., linear, non-linear), and ii) the complexity of the data.

Based on the classification boundary, the classifiers are commonly divided between linear and
non-linear. Linear classifiers, such as logistic regression and linear SVMs, assume that the cat-
egorical variable (Y ) can be obtained by exploiting a linear combination of the input features
(X). Non-linear classifiers generalize the boundary by adjusting polynomial boundaries, Gaussian
kernels, or algorithmic criteria based on feature thresholding. Figure 6 illustrates a linear and non-
linear decision boundary. Non-linear classifiers are able to capture more complex patterns from the
data, but as consequence, they are computationally more complex than their linear counterpart,
and more prune to memorize the training data (overfitting).

Regarding the data, its intrinsic complexity can not be easily obtained or described, in par-
ticular for high dimensional datasets. The most intuitive way to understand the data complexity
is by visualizing its features and the respective classes. This approach is usually restricted to low
dimensional data (2D or 3D), or to simplified versions of the feature space obtained by manifold
algorithms like Principal Components Analysis (PCA), IsoMaps, Self Organizing Maps, among oth-
ers (Betancourt et al., 2016). A common approach when dealing with hihgly dimensional data is
to infer its complexity by comparing the capability of different classification algorithms to capture
know patters. Roughly summarized, a simple classifier (linear) will perform poorly on complex data
(non-linear), while complex classifiers (non-linear) are able to fit more complex data in exchange of
a large risk of overfitting. This is known as the bias-variance tradeoff Geman et al. (1992). Fortu-
nately, as will present bellow, machine learning literature contains different mechanisms to face the



11

Figure 5. Boxplots of the distributions of the top 5 most discriminant image-derived variables in each city. No-slum
distributions in yellow and slum distributions in red. Variables organized from left to right with higher
values of the Kolmogorov-Smirnov test at left and lower values at right.

bias-variance dilemma. Regarding the size of the training sets, there is not a direct answer about
the number of obserbations required to train the models and is commonly pointed as a consequence
of the complexity of the problem to solve. Recent advances in data-science and deep-learning fre-
quently point to the benefits large datasets; however, when data collection is expensive and time
consuming a common practice is to observe the changes in the evaluation criteria while sequentially
increasing the number of observations used to train the models. If the evaluation criteria does not
improve (converge) while the number of training samples increase, then it is valid to reject the
necessity of collect more training data.

Since our data has high dimensionality (30 features extracted per polygon), with unknown dis-



12

D
e
ci

si
o
n
 B

o
u
n
d
a
ry

X1

X2

(a) Linear Boundary on separable data

Dec
isi

on
 B

ou
nd

ar
y

X1

X2

(b) Non-Linear Boundary on separable data

Figure 6. Linear and no-linear classification boundary in 2D

tributions, and comes from three different cities, we explored two approaches for training our model
for slum identification: i) train a unique classifier on an unified dataset (i.e., without differentiat-
ing the cities) and then evaluate if the resulting slums are reliable, and ii) follow a multi-model
approach by training the classifier in each city. We explore the performance of linear (Logistic
Regression, linear SVM) and non-linear classifiers (Polynomial and Radial Basis Kernel SVMs, and
Random Forests).3 Next, we will provide a brief description of these classifiers.

Logistic Regression: It is the most common linear clasifier and commonly used by policy makers
in econometric literature. It can be considered a mathematical approach, with the main goal
of exploit the binary logistic model, represented in equation (1), to estimate the probability
of a categorical value Y given the input features X. For practical purposes equation (1)
can be solved for Xβ to obtain (2), and the value of β estimated by optimizing the error
function (J), which in our case is defined by (3) which is the Least Square Error plus a
regularization term. Where C is a regularization constant to avoid extremely large or small
values of the coefficients β, and controls the overfitting/underfiting problem. Large values of
C will encourage wiggly boundaries by giving more importance to the least square term in
equation (3). In our formulation, the regularization constant is applied to the LSE term to
keep it consistent with the formulation of the SVM, and it is equivalent to apply 1/C to the
regularization term. The selection of the regularization constant is explained at the end of
this chapter.

Y =
1

1 + e−XB
(1)

Ŷ = Xβ = log

(
Y

1− Y

)
(2)

J = C(Y −Xβ)2 +
βTβ

2
(3)

3These classifiers are available in the Python library Scikit-learn by Pedregosa et al. (2011).



13

Regression analysis including the error function proposed in Equation 3 is commonly known in
statistical analysis as Ridge regression and is frequently used to avoid large β values. Despite
of being using a method frequently applied in econometrics, our interest is the capability of
the trained model to classify new observations and not in the role of the exogenous variables to
achieve it, which allow us to relax the assumption of multicolinearity (Cessie and Houwelingen,
1992). This correlation, from an econometric perspective, will considerably affect the β values
and their p-values; however, the ontained model will perform the same in the classification
tasks. Other types of regularization terms like Lazzo (also known as L1) can be applied to the
proposed algorithm, but machine learning literature frequently point to Ridge regularization
(also known as L2) as the most efective approach (Tibshirani, 1996; Ng, 2004). This can be
illustrated by assumimg correlated variables in the dataset.

Support Vector Machine: It is a popular non-probabilistic classification algorithm, commonly
known by its capability to maximize the margin between the decision boundary and the
data. SVM, as the logistic regression, relies on a mathematical formulation to express the
classification task as an optimization problem. It is highly popular due to its capability
to easily include non-linear boundaries (kernels) from the theoretical formulation, and its
explicit goal of locating the boundaries as far as possible of the training data. To introduce
the SVM formulation lets bring back the training data X and their categorical labels Y to
construct n pairs of training samples: (X1, y1), (X2, y2), . . . , (Xn, yn), with Xi ∈ Rp and
yi ∈ {−1, 1}. Equation (4) defines a linear classification hyperplane and equation (5) its
induced classification rule, where β is a unit vector and h(x) are a family of basis functions
to enlarge the input space (e.g., Linear, Polynomial, Radial Basis, Splines, etc.). From this
formulation it is possible to understand SVM as a strategy to map the data from an input
space to a different space defined by h(x) (on which the differences in the input data are
exposed), and then define the classification rules by using G(F ), which measures the side of
the boundary on which the observations are located. The advantage of SVM resides then on
finding a well defined h(x) and the parameters B.

{F : f(X) = h(X)Tβ + β0 = 0} (4)

G(F ) = sign(f(X)) = sign(h(X)Tβ + β0) (5)

(6)

Assuming that the classes are not separable (i.e., some observations are non separable by a
predefined boundary shape) then the values of β and β0 are the solution of the optimization
problem given by (7), where ξ = (ξ1, ξ2, . . . , ξN ) are referred as the slack variables which ac-
count the distance of the missclassified obserbations to the decision boundary, and C is a reg-
ularization constant having the same effect of the one defined for the linear regresssion. Note
that conceptually the SVM procedure looks to minimize the distance of the non-separable
obserbations to the boundary, plus the magnitude of the coefficients β.

min
β,β0
||β||2 + C

N∑
i=1

ξi (7)

subject to: yi(h(Xi)
Tβ + β0) ≥ 1− ξi, ∀i, (8)

ξi ≥ 0 (9)
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Interestingly, the SVM formulation constitutes a quadratic problem with linear constraints
that can be solved via Lagrange Multipliers to obtain the Lagrange Dual function (10) and
the solution of the problem (7) as (11), where αi are the lagrange multipliers of the constraint
given by equation (8). The solution of the problem only involves the basis function as inner
products, which constitutes one of the most popular characteristic of the SVM formulation,
allowing to solve the problem without define the basis function but its inner product (kernel).
Note that, the decision function of a new obserbation x is obtained from equation 11 by using
the information of the N missclassified points, namely their lagrange mutipliers αi, their
original categorical variable yi, and their inner product with respect to the new obserbation
〈h(x), h(xi)〉.

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′〈h(xi), h(xi′)〉 (10)

f(X) =

N∑
i=1

αiyi〈h(x), h(xi)〉+ β0 (11)

In the experimental section we use the dth polynomial kernel (1 to 5 order) and the radial basis
kernel defined by equation (12) and (13). To gain intuition behind the kernel advantages, the
larger the grade of the polynomial the more complex curves in the classification boundary.
On the other hand, the RBF kernel allows the boundary to create other shapes like circles or
ellipses if the data requires it. For the SVM case, the concept of overfiting is quite relevant
in particular for complex kernels, highlighting the importance of a proper tunning to the
regularization constant. We use the subindices of the SVM as reference to the kernel used,
for example SVMk uses the kth polynomial kernel and SVMrbf the radial basis kernel. In
seek of simplicity the description of the SVM procedure presented in this paper is hihgly
summarized. See (Hastie et al., 2009) for a complete overview of the optimization procedure
and more details about the kernel functions.

Kdpol(x, x
′) = 〈h(x), h(x)′〉 = (1 + 〈x, x′〉)2 (12)

Krbf (x, x′) = 〈h(x), h(x)′〉 = eγ||x−x
′||2 (13)

Random Forest: Contrary to the Linear Regression and the SVM, the Random Forest takes
its decision by a sequential set of thresholding rules on the input space and its procedure
is closer to an algorithmic strategy rather than an optimization method. Theoretically, a
Random Forest (RF) is an ensamble method formed by multiple decision trees, each of wich
is trained by using a different part of the training data. A Decision Tree, respectively, is an
algorithmic strategy to divide in feature space to fit the output variable (MathSoft, 1999).

Lets assume the already introduced data pairs (X, y), and let define the number of variables
in the input space as p. It is possible to define an arbitrary partition of the input space Xp

into M regions as R1, R2, . . . , RM , and a response constant cm per region in the partition.
Given a partition, it is possible to find the best values of cm by defining an error function
J(cm) and evaluating it for all the observations withing each region, see (14). The role of
the response constant is to capture the output variable of the observations inside each region
Rm and can be defined, for example, as the dominant label in the region (for a classification
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problem) or as the average value (for a regression problem based on the squared error). On
its more general way, the goal of the decision tree is to reach a good partition of the input
space and as thus define the response constants.

ĉm = argmin
cm

J(cm) ∀m ∈ 1, . . . ,M

= argmin
cm

J(f(yi, xi, cm)|(xi, yi) ∈ Rm) ∀m ∈ 1, . . . ,M (14)

Starting with all the training observations consider a splitting feature j and value s to divide
the feature space in two half-planes (R1 and R2) defined in (15). The best pair of (j, s) is
the one that minimize the overall error of R1 and R2 as shown in (16). The same splitting
procedure can be applied recursively on each half-plane until a stop criteria reached. In our
case we use the maximum depth as stop criteria. The obtained tree can be applied to process
new observations by following the rules captured by the sequences of (j, s) and returning the
response constant assigned to the output region. The final decision of the Random Forest is
the average of the decisions of its Decision Trees. In our case the error function is the Least
Squared Error, the maximum depth is set to 10, and each each random forest contains 10
decision trees.

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (15)

minj,s [J(ĉ1) + J(ĉ2)] = minj,s[ J(f(yi, xi, ĉ1)|(xi, yi) ∈ R1(j, s)) + (16)

J(f(yi, xi, ĉ2)|(xi, yi) ∈ R2(j, s))]

Our comparison of the classifiers is based on the β score (Fβ), which is a numeric performance
defined by equation (17), where the precision and recall are defined by equation (18) and (19)
respectively. In general the precision measures how reliable are the slums detected (how pure are
the regions detected as slum) and the recall measures how good the classifier is to retrieve the areas
defined as slum (how many of the real slums are detected). The Fβ score as well as the precision
and the recall are bounded between 0 and 1, being 1 a perfect classifier. The value of β must be
selected according to the problem to solve and is usually set to 0.5, 1 or 2. A value of β = 0.5 gives
a larger weight to the precision while a value of β = 2 prioritize the recall. In the remain part of
this paper β is defined as 2 (i.e., Fβ=2) to give a larger importance to the recall. This implies that,
when classifying areas as slum or no-slum, we prefer type I errors over type II errors to prevent
that vulnerable population is left out of consideration.

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
(17)

precision =
TruePositives

TruePositives+ FalsePositives
(18)

recall =
TruePositives

TruePositives+ FalseNegatives
(19)
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Once defined the best performing approach (unified or multi-model) and the best classifier,
the next step is to tune the regularization constant to avoid overfiting the data and fine-tune the
decision threshold to obtain the final F2 scores. The regularization constant is tuned exhaustively
by evaluating the F2 score obtained while changing the regularization constant. The regularization
constant leading to the higher F2 score is then defined as the final choice. The decision threshold
is the value on which the classifier decides weather a particular observation is accepted as slum or
not. For the logistic regression it can be understood as a final horizontal shift of the logistic curve,
and for the SVMs as a final tuning of β0. The decision threshold is selected by using the Receiver
Operating Characteristic (ROC) curve, which is a visualization of the False-Positives (X-axis) and
True-Positives (Y-axis) while changing the decision thresholds. The machine learning bibliography
suggest to define the threshold as the one that generates the closest point to the upper-left corner
in the ROC curve. It is important to note that the decision thresholds of the logistic regression
reported in section 3 are not bounded between 0 and 1, which is equivalent to use the X axis for
the final decision.

To keep the tunning process fair (regularization constant, decision threshold), it is necesary
to use only observations in the training dataset. This is accomplished by using cross-validation
F2-scores. To obtain the cross-validation F2-scores scores, the first step is to divide the training
dataset into k equal sized parts. On a single iteration, a classifier (with a particular regularization
constant and decision threshold) is trained on k− 1 parts, and tested in the remaining one to keep
the F2-score. This process is repeated k times ensuring that each part is used once for testing.
The final cross-validation F2-score is the average of the obtained F2-score on each iteration. Our
parameter selection is based on 10− fold cross-validation.

2.3 Slum Changes in Time

As stated above, we downloaded historical GE images for selected sectors in each city from about
a decade ago to perform change analysis (t − 1 period). We extracted image features using the
same regular grid of square cells and we used the classifier model trained with the 2016 image-
extracted data (t period) to classify the corresponding areas into slum or no-slum classes. Then
we compared the results of the two dates (t vs t − 1) in a cell by cell basis and assigned different
colors to differentiate the areas that were classified as slum in both dates, those that were classified
as no-slum in both dates, those that were classified as no-slum in t− 1 date and were classified as
slum in t date, and those that were classified as slum in t− 1 date and no-slum in t date.

Following this rationale, we tested if the proposed approach could be useful to analyze slum
dynamics over time by detecting areas that have become slum, stable areas (no change), and areas
that were slum and have become no-slum by upgrading or urban renovation processes.

3 Results and discussion

As the first step in our experimental analysis we use the data of the three cities to build a unified
model. Table 4 shows the F2 score for each type of classifier in the testing set of each city. It
is evident from the table that SVMrbf stands out as the best performing model. Regarding the
polynomial SVMs (SMV2,...,SMV5) there were some signals of underfiting particularly in the higher
order models. The linear models (Logistic Regression and SMV1) reach a good classification score
and does not show signal of overfiting/underfiting. However, the Gaussian kernel of the SMVrbf is
able to disambiguate difficult cases. Finally, it is noteworthy the poor performance of the Random
Forest. The low classification scores of some algorithms suggest the existence of singularities within
cities that complicates the identification of slums using an unified model.
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Table 4. Unified Model for Slum Detection (F2-Scores).

City Log. R SVM1 SVM2 SVM3 SVM4 SVM5 SVMrbf RF

Buenos Aires 0.649 0.581 0.472 0.419 0.226 0.134 0.671 0.277
Medellin 0.757 0.516 0.794 0.817 0.821 0.841 0.872 0.550
Recife 0.671 0.552 0.559 0.565 0.564 0.592 0.803 0.516

Motivated by the differences in the urban structures of the cities we train a classification model
for each city. Table 5 shows the testing F2 score of each model and city. In this case the best
classification score is obtained by the Logistic Regression and the SVMrbf , both achieving F2

improvements between 2 and 5 points with respect to the unified model. The rest of the models
show some improvements against their unified counterpart but the performance is still poor in
comparison with the Logistic Model and the SVMrbf . These results confirm the intuition of
structural differences in the features of the slums for each city that preclude the implementation of
an unified model.

Table 5. Individual Model for Slum Detection (F2-Scores).

City Log. R SVM1 SVM2 SVM3 SVM4 SVM5 SVMrbf RF

Buenos Aires 0.737 0.642 0.649 0.678 0.652 0.642 0.688 0.596
Medellin 0.928 0.886 0.783 0.839 0.809 0.832 0.909 0.687
Recife 0.775 0.734 0.702 0.644 0.585 0.576 0.821 0.532

The next step is to remove signs of overfiting/underfiting of the best performing models and
tune the decision threshold (th). This part of the analysis only includes the Logistic Regression
and the SMVrbf . As explained in section 2.2 the regularization term is selected by an exhaustive
incremental search and the best threshold by using the ROC curve. Table 6 shows the F2 scores of
the default configuration (default), using only the tuner regularization term (Reg.), and using the
regularization term and the best threshold (Reg + th). The table confirms the benefit of the final
tunning and allows us to conclude that the best strategy is to use single model per city and take
into account the regularization parameter and tune the decision threshold.

Table 6. Tuning the best classification models (F2-Scores).

Log. Regression SVMrfb

City Default Reg. Reg + th Default Reg. Reg + th

Buenos Aires 0.737 0.759 0.715 0.688 0.813 0.817
Medellin 0.928 0.949 0.957 0.909 0.937 0.976
Recife 0.775 0.767 0.827 0.821 0.87 0.872

Figure 7 shows the F2 score of each individual SVMrbf while changing the regularization term.
The regularization value that maximizes the F2 score is set as the regularization term of the model.
Figure 8 shows the ROC curves given the best regularization term. As explained before the decision
threshold is set as the one that generates the closest point to the Upper-Left corner of the curve.
Finally, Table 7 show the parameters selected for Table 6.

Figure 9 shows the maps of detected slum areas from the classification process of the 2016 GE
images in each city. Most of the variables used for input for the machine learning algorithm (i.e.,
spectral, texture and structural features) are very useful for the quantitative characterization of
the spatial pattern of the elements in an image (Ruiz et al., 2011), and they are also useful to
quantify the heterogeneity of the image elements in each polygon or 100 by 100 meters cell (Duque
et al., 2015). Thus, these sets of image-derived features perform better for slum detection in urban
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Figure 7. Tuning the regularization terms.
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Figure 8. ROC curves to select the best decision threshold. For visualization purposes the x axis is reported in
logarithmic scale. The final regularization term is reported in Table 7

Table 7. Final parameters of the logistic regression and the SVMrbf . The values of the decision threshold for the
logistic regression are reported in the x axis, and are not bounded between 0 and 1. For both cases (Logistic
Regression and SVM), the most negative the threshold the more prone the classifier to set an obserbation
as slum.

Log. Regression SVMrfb

City Reg. Term threshold Reg. Term threshold

Buenos Aires 12.618 -3.111 394.42 -0.969
Medellin 20.092 -1.494 16.681 -0.464
Recife 225.70 -1.788 18.307 -0.992

settings where the slum areas have a different spatial pattern than no-slum areas and where those
slum areas exhibit a high diversity of building and roofing materials. As showed in Table 6 the
approach performs better for Medellin (F2 score 0.976), then for Recife (0.872), and then for Buenos
Aires (0.817). Even though the F2 scores are high, there are some overestimation of slum areas in
all three cities. However, these results are still encouraging for a rapid approach to slum detection,
given the simplified input data, the speed of the method and the ease to automate the process.

The image-extracted variables used to separate slum areas from no-slum areas in all three
cities worked best for Medellin and Recife than for Buenos Aires. The confusion matrix of the
classification results show the magnitude of the overestimation (no-slum areas classified as slum)
and underestimation (slum areas classified as no-slum) for the testing dataset in each city. Buenos
Aires shows less than 3% of overestimation and about 1% of underestimation; Medellin is the best
case, with 2% of overestimation and no underestimation; and Recife shows 4.5 % of overestimation
and less than 1% of underestimation. Figure 10 shows known slum sectors in each city at the same
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Figure 9. Classification results for 2016 GE images of each city to slum and no-slum areas. From left to right: Buenos
Aires, Medellin, Recife.

Table 8. Confusion Matrix of the SVMrbf with the parameters reported in Table 7

(a) Buenos Aires

Predicted Predicted
No-Slum Slum

No-Slum 2387 84
Slum 17 136

(b) Medelĺın

Predicted Predicted
No-Slum Slum

No-Slum 903 27
Slum 0 227

(c) Recife

Predicted Predicted
No-Slum Slum

No-Slum 3800 203
Slum 32 453

spatial scale: Villa Zavaleta (21-14) in Buenos Aires, Comuna Santa Cruz in Medellin, and Chao
de Estrelas in Recife. Table 9 shows a general characterization of slum areas in each city in terms
of the image-derived features to help the understanding of the classification results. The slums
in all three cities are composed of clusters of small dwelling units and very few vegetated areas.
However, as was expected from the boxplots of figure 5, the appareance of slums in Buenos Aires
and Medellin have more similarities when compared to the appareance of the slums in Recife. The
slum areas in Buenos Aires and Medellin are characterized by high heterogeneity at short distances
and high homogeneity at large distances (different things in close proximity, but the same pattern
at larger scale), and similar organic patterns but the slum in Buenos Aires is more cluttered than in
Medellin. The slum in Recife shows more homogeneity in color with most roofs showing clay tiles
or similar. This explains the high discriminating power of the variable MEAN1 in this city, as the
band 1 records the intensity values of the red channel in the visible spectrum and slum areas have
many pixels with the same red tone in this city. Also, the slums in Recife show more regularity in
the spatial pattern of the urban layout than in the slums of the other two cities.
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Figure 10. Sectors of known slum areas in each city. From left to right: Buenos Aires, Medellin and Recife.

Table 9. General characteristics of slums in the analyzed cities.

Observable feature Buenos Aires Medellin Recife

Short distance heterogeneity high high medium to high
Large distance homogeneity very high very high medium to high
Roofing material diversity high high medium to high
Vegetation coverage very low low low
Urban layout pattern organic very organic regular
Crowdedness very high high medium to high
Dwelling size very small very small small
Roads material not paved paved not paved
Roads width very narrow narrow standard

The lower score obtained for Buenos Aires could be explained by the quality of the input GE
image and the fact that some of the no-slum areas of the city show some characteristics that are
also present in slum areas. The Buenos Aires GE image shows low contrast (differences in color
intensity tend to be low across the image), which could lower the quantifiable differences between
the slum and no-slum areas. Figure 11 shows the Zavaleta villa next to a no-slum area. Both
areas show very few vegetated areas between buildings and high heterogeneity at short distances,
but the no-slum sector shows more regularity in the spatial pattern of the urban layout and large
homogeneous surfaces interleaved with clusters of smaller buildings.
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Figure 11. Slum sector in Buenos Aires (Villa Zavaleta) compared to the no-slum area next to it. The red line shows
the slum boundary as mapped in www.caminosdelavilla.org.

Figure 12 shows the results of the temporal analysis of the selected sectors of 1 squared kilometer
in each city. The approach seems to be useful to inform from a global perspective of the areas that
have changed from no-slum to slum and vice versa between the analyzed dates. However, as in
the implemented algorithm the recall was given priority over the precision for a good identification
of the more problematic regions within the city, we expected to have some false positives in the
classification results. These false positives difficult the interpretation at a detailed scale or in a cell
by cell (of the regular grid) basis, and they can mask real changes that an interpreter could pick
up visually by comparing the two GE images of each sector.
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Figure 12. Classification results for historical GE images of selected sectors in each city.

The proposed approach works better to identify recently informally occupied urban areas with
slum characteristics than to pick up changes due to slum upgrading processes. Upgrading of slum
areas often involves the improvement of dwelling units and the offer of public services (UN-Habitat,
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2016), and less often with modification of the urban layout as that implies relocation of population
and many slum residents fear that redevelopment will leave them homeless (Stellmacher, 2011). In
this regard, upgrading processes that do not significantly change the spatial pattern and texture of
the urban areas cannot be picked up by this approach, as most of the used image-derived features
quantify aspects of the urban scene related to the spatial pattern and texture of the urban layout.

This workflow worked well for slum detection on a single date, but it has drawbacks for spatio-
temporal analysis. Even though the historical images were resampled to match the pixel size of the
updated reference images, and they were radiometrically normalized to match the color intensity;
there are still differences in view angles, lighting, and vegetation phenology cycles between images
that can affect vegetation appearance and shadow extent, and hence the values of the image-derived
features and the classification results. To minimize the differences in view angles and vegetation
phenology the practicioner must use historical images of the same day of the year as the reference
or most updated images; but this is nearly imposible to control using the available data in Google
Earth. Commercial satellite VHR imagery are more fit to this purpose, as they that can be acquired
for specific dates to match the day of the year and minimize those differences.

4 Conclusions

This paper explored the possibility of implementing a low-cost standardized method for slum de-
tection using spectral, texture and structural features extracted from VHR GE imagery as input
data and assessed the capability of three ML algorithms to classify urban areas as slum or no-slum.
Using data from Buenos Aires (Argentina), Medellin (Colombia), and Recife (Brazil) we found that
Support Vector Machine with radial basis kernel (SVMrbk) delivers the best performance with a
F2 score over 0.81.

We also found that the particularities of each city are important to take into account and
preclude the use of a unified classification model. The ML algorithms worked best for Medellin and
Recife, with F2 scores of 0.98 and 0.87 respectively. The image-derived features performed better
for slum detection in these cities as their slum areas have a different spatial pattern and texture
than no-slum areas and they exhibit a high diversity of building and roofing materials.

The proposed workflow need more sophistication to properly track changes in time. As in the
implemented ML algorithms the recall was given priority over the precision for a good identification
of the more problematic regions within the city, there are some false positives in the classification
results that difficult the change analysis between different dates. However, the proposed approach
did work to identify recently informally occupied urban areas with slum characteristics, where the
changes in local heterogeneity and the spatial pattern are clearly seen and different from those of
occupied formal areas. Changes of the slum status of an area due to upgrading processes would be
still difficult to pick up, since those processes do not significantly change the spatial pattern and
texture of the urban areas, which are the aspects quantified by the image-derived variables.

Another future line of research will be to use algorithms for object and scene recognition on
images from Google Street View to generate a new set of features that can improve the performance
of our classification models. Street view and satellital imagery for slum identification can also be
an important tool for supporting programs such as the Trust Fund for the Improvement of Family
Housing lead by the Development Bank of Latin America, and the Foundation in favor of Social
Housing.
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